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Summary

1. Protected and managed species, including harvested fishes, exhibit spatial and temporal

variation in their distribution and productivity. Spatio-temporal variation can arise from dif-

ferences in habitat quality, human impacts (including harvest), density-dependent changes in

per capita productivity, as well as individual movement. Human impacts (e.g. direct harvest)

also vary spatially and over time, and monitoring the overlap between impacts and popula-

tion distribution is necessary to ensure that human impacts are sustainable and to prioritize

research and management for populations that are heavily impacted. However, estimating

spatio-temporal variation in human impacts and population dynamics while accounting for

individual movement has remained computationally challenging for decades.

2. We developed a spatial population growth (also known as ‘surplus production’) model

that is inspired by finite element analysis, which estimates spatio-temporal population dynam-

ics given density-dependent population regulation, individual movement and spatially explicit

harvest. We demonstrate the method using data for big skate Raja binoculata in the Califor-

nia Current from 2003 to 2013 and demonstrate that results can be processed to estimate an

upper limit on sustainable harvest (an ‘overfishing limit’). We also conduct a simulation

experiment to explore the small-sample properties of parameter estimates.

3. A simulation experiment confirms that real-world sample sizes are sufficient to estimate

the sustainable harvest level within 20% of its actual value. However, sample sizes are likely

insufficient to reliably estimate movement rates.

4. The spatial population growth model estimates an overfishing limit of 740–890 metric ton-

nes for big skate from 2010 to 2013, compared with annual harvest <100 tonnes. This sug-

gests that recent harvest of big skate is likely sustainable, and sensitivity analysis confirms

that this conclusion is robust to different potential rates for individual movement.

5. Synthesis and applications. We recommend that spatio-temporal population models be

used across systems and taxa to monitor the spatial overlap between species distribution and

human impacts. For big skate, we recommend management rules triggering additional data

collection and assessment effort if harvest rates substantially increase. We also recommend

future research regarding spatial management regulations for emerging fisheries.

Key-words: advection–diffusion, Big skate Raja binoculata, finite element analysis, Gaussian

random field, geostatistics, Gompertz model, overfishing limit, spatial population model,

stock assessment, surplus production

Introduction

The distribution and density of natural populations varies

tremendously across landscapes and over time due to

variation in habitat quality, environmental conditions and

biological interactions (Tingley et al. 2009). For example,

the spatial distribution of foraging predators frequently

changes during population decline and recovery (e.g.

Swain, Benôıt & Hammill 2015). The intensity of human

impacts also varies spatially and over time, so mapping

the spatial overlap between impacts and population densi-*Correspondence author. E-mail: James.Thorson@noaa.gov
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ties is central to assessing conservation and management

goals (Smith et al. 2010; Rassweiler et al. 2014).

Models estimating spatial and temporal variation in

population density are increasingly used to track shifts in

population distribution subject to environmental and cli-

matic changes (Kotwicki & Lauth 2013; Harsch et al.

2014). Spatio-temporal models may improve precision

when estimating purely temporal trends in population

abundance (Shelton et al. 2014). It is feasible to fit spatial

models to ecological data while including random or

directed movement of individuals (e.g. Hooten & Wikle

2010), and these models are increasingly used to estimate

stability and persistence in meta-population models (e.g.

Chandler et al. 2015). The role of individual movement in

species distribution is often studied using data for individ-

ual animals (e.g. spatial capture–mark–recapture models,

(Royle et al. 2012)), but less often using purely count data

(although see Chandler & Royle 2013). Demographic

models that include movement generally demonstrate

important differences in population and community

dynamics relative to models that ignore movement (Skel-

lam 1951; Okubo, Hastings & Powell 2001).

Marine ecologists have studied the productivity of

fishes and crustaceans using population growth models

(which we call ‘surplus production models’, following

common terminology in fisheries science) for more than

eighty years (Russell 1931; Schaefer 1957). Surplus pro-

duction models consolidate individual growth, natural

mortality and the recruitment of new individuals to the

population (‘recruitment’) into a single surplus produc-

tion function and therefore approximate dynamics using

this production function and the rate of human-caused

mortality. By combining individual growth, recruitment

and natural mortality into a single function, surplus pro-

duction models represent a very simplified picture of pop-

ulation dynamics and are often used as an introduction

to population dynamics for students of ecology and fish-

eries science. Due to their relative simplicity, surplus pro-

duction models also represent a natural starting point

when developing more complicated models, for example

those that approximate dynamics for multiple species

simultaneously (Christensen & Walters 2004) or describe

patterns emerging from species interactions (Walters &

Kitchell 2001).

Despite the central role of surplus production models

to fisheries science and the increasing role for statistical

estimation of spatial models in applied ecology, there has

been little previous research regarding spatial surplus pro-

duction models for marine species. One counter example

is Carruthers, McAllister & Taylor (2011), who estimate

density, a production function, and movement among 12

spatial strata for pelagic tuna in the Atlantic Ocean. Car-

ruthers, McAllister & Taylor (2011) used tagging data as

well as fishery catches and catch rates to estimate parame-

ters governing production and movement, but assumed

that dynamics were ‘deterministic’ (i.e. that the dynamics

can be explained by a specified population growth func-

tion without any residual error). Research in marine and

terrestrial systems generally demonstrates that estimating

stochastic variation in population growth in addition to

measurement errors (i.e. using a ‘state-space model’)

decreases error when estimating demographic parameters

or population abundance (de Valpine & Hastings 2002;

Ono, Punt & Rivot 2012). Other studies have estimated

population growth and movement among discrete strata

(Thomas et al. 2005) or have tracked individual move-

ment without explicitly modelling population growth

(Chandler & Royle 2013), but we know of no published

study that uses state-space estimation of a spatial surplus

production model while accounting for advective–diffusive
movement of individuals.

In this study, we develop a new spatial surplus produc-

tion model (which includes advective–diffusive movement,

both process and measurement errors, and spatial variation

in human harvest rates) to estimate the cumulative overlap

between human fishing and population density across a

marine landscape. We use a simulation experiment to

explore the small-sample properties of the spatial surplus

production model when estimating parameters using simu-

lated data. We also demonstrate this model using 11 years

of data for big skate Raja binoculata in the US waters of

the California Current and use results to estimate what

level of coastwide harvest is likely to be sustainable for this

population. This case study application suggests that big

skate harvest in 2003–2013 was likely sustainable, but that

large (fivefold) increases in harvest would likely necessitate

more detailed assessment of human impacts.

Materials and methods

CONVENTIONAL SURPLUS PRODUCTION MODELS

A surplus production model (often called a population growth

model for non-aquatic taxa) typically approximates changes in

population abundance bt from year t to the next year t + 1:

btþ 1 ¼ gðbtÞ exp ðetÞ eqn 1

where g() is typically a nonlinear function representing the aggre-

gate effect of natural mortality, production of juveniles, and indi-

vidual growth rates, and et represents unmodelled variation in

population abundance in the transition from year t and t + 1.

Here and throughout, we specify that errors are multiplicative

and positive (i.e. exp ðetÞ [ 0 for all ɛt). As an alternative to

eqn 1, we note that population growth models can be constructed

to track changes in population numbers following count-valued

birth and death functions (e.g. Dail & Madsen 2011). However,

we instead treat abundance bt as a continuous variable because

fish populations are generally large such that individual dynamics

can be approximated using continuous variables. Reconstructing

dynamics also requires specifying the biomass in the first esti-

mated year, b0, and this is generally treated as an estimated

parameter. Population growth in excess of replacement (termed

‘surplus production’) is often assumed to be zero when biomass is

zero or at population carrying capacity (i.e. that g(bt)�bt = 0

whenever bt = 0 or bt = K, where K is the carrying capacity of
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the population). Historically, surplus production has been mod-

elled as reaching a maximum value at some intermediate level of

population abundance, although the exact shape of the surplus

production function has been debated for several decades (Schae-

fer 1957; Thorson et al. 2012; Mangel et al. 2013).

In models for fisheries, surplus production models often explic-

itly include deaths due to human harvest:

btþ 1 ¼ gðbt exp ð�utftÞÞ exp ðetÞ eqn 2

where ft is fishing effort data and ut is an estimated parameter

defined such that utft is the instantaneous rate of mortality caused

by fishing in year t (termed the ‘fishing mortality rate’). Fishing

effort data ft are only informative if restrictions are imposed

upon ut (e.g. assuming ut = u for all years). Fishing mortality is

here assumed to occur prior to the action of the density-depen-

dent function g. We also follow Meyer & Millar (1999) in assum-

ing that the action of process error ɛt (i.e. change in biomass

from year t to t + 1 that is not otherwise explained by g or utft)

occurs after density dependence and fishing effects. Fishing

mortality utft is estimable given that information regarding total

harvest ht in each year t is available:

ht ¼ btð1� exp ð�utftÞÞ exp ðdtÞ eqn 3

where dT is penalized towards zero, for example specified to fol-

low a normal distribution, dt �Nð0;r2
dÞ, such that the model fits

the harvest data as if it were known without error as r2
d ! 0.

Parameters are generally estimated by fitting to an index that is

assumed to be proportional to population abundance:

ct ¼ qbt exp ðstÞ eqn 4

where ct is an index of population abundance in year t, st is spec-
ified to follow a normal distribution, and q is an estimated

parameter scaling biomass to the index of abundance (called the

‘catchability coefficient’ in fisheries models). The catchability

coefficient is identifiable in surplus production models only if

there is sufficient ‘contrast’ in catch and the index data (i.e. an

increase in catch is associated with a decrease in the index of

abundance). As commonly used, the surplus production model

requires that harvest data h are available in each year, but addi-

tional assumptions (i.e. that fishing mortality ft follows a ran-

dom-walk process) can avoid this requirement in some cases.

SPATIAL SURPLUS PRODUCTION MODELLING

We next seek to demonstrate how to adapt the conventional sur-

plus production model to approximate spatial population dynam-

ics. We treat population density and surplus production as

functions defined at every location s within a specified two-

dimensional spatial domain D, where s is referenced by latitude/

longitude or another appropriate 2-dimensional coordinate sys-

tem, s 2 D 2 R2. Density BtðsÞ at location s and year t is treated

as a function (we use script notation to signify function-valued

variables), and it arises from a combination of density-dependent,

harvest, and movement processes:

Btþ 1 ¼ gðmðBt exp ð�utF tÞÞÞ exp ðEtÞ eqn 5

where F t is a function representing fishing effort in year t,

Bt exp ð�utF tÞ is the product of survival rate exp ð�utF tÞ and den-

sity Bt, m() is a movement function representing the net effect of

advective and diffusive movement, and g is a pointwise function

approximating local density dependence in population dynamics.

Given that the action of movement m is prior to density dependence

g, density dependence at location s is a function of densities within a

local neighbourhood whose size and shape is defined by movement

m. Similarly, Et is a function representing unexplained variation in

dynamics and is specified as being spatially autocorrelated:

Et �GPð0;CeÞ eqn 6

where the mean of the Gaussian process is zero, and Cɛ is the

spatial covariance function for process errors. Future research

could explore alternative restrictions on fishing mortality, for

example exp ð�utFw
t Þ where w represents a competitive or cooper-

ative effect of fishing effort on local fishing mortality (Wilberg

et al. 2010), although we do not do so here.

Movement function m typically includes both random and direc-

ted components, termed diffusion and advection, respectively. This

function can be calculated from an instantaneous movement rate:

@

@t
B ¼ ðuTrþr � RrÞB eqn 7

where uTrB represents advective movement (where ∇ is the gra-

dient operator, which yields a vector of length two when evalu-

ated at location s because B is a function defined in two-

dimensional space, and u is a direction vector of length two), and

∇�Σ∇ represents diffusive movement (where Σ is a 2 9 2 rotation

matrix governing the rate of diffusion in different directions, and

if Σ = I then ∇�Σ∇ reduces to the Laplacian operator).

IMPLEMENTING THE SPATIAL SURPLUS PRODUCTION

MODEL

In practical applications, the solution to movement and produc-

tion defined for all possible locations within a population domain

can only be calculated analytically given particular functions for

density dependence (Okubo, Hastings & Powell 2001). More

generically, however, the model can be approximated using tech-

niques derived from finite element analysis. We first divide the

entire spatial domain D into a set of nr triangles such that every

location s 2 D is within exactly one triangle (see Appendix S1 in

Supporting Information). The number of triangles represents a

balance between numerical precision and computational speed,

and we recommend that future studies confirm that results are

unchanged when increasing the number of triangles (as we have

done for the results presented in this study). Fish within each tri-

angle are assumed to be homogenous and evenly mixed, such that

every location s within triangle r has the same density, harvest

rate, surplus production, process error, etc. Therefore, each func-

tion in the spatial surplus production model (e.g. density Bt) is

approximated as a piecewise constant function. Triangle r has area

ar (in units km2) and this area contains abundance br,t (in units

kg.) such that population density at location s in that triangle is

br,t/ar, and we use vector bt to refer to the abundance in every

triangle. Population abundance changes among years as follows:

btþ 1 ¼ gðMðbt � exp ð�utftÞÞÞ � exp ðetÞ eqn 8

where M is a matrix representing annual movement rates among

triangles, ft is proportional to the amount of fishing activity per
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unit area fr,t in triangle r (e.g. the total area swept by bottom

trawlers divided by the total triangle area), and ut is an estimated

scaling coefficient such that utfr,t is the instantaneous fishing mor-

tality rate. Process error ɛt again represents spatially correlated,

unexplained variation in dynamics:

et �MVNð0;ReÞ eqn 9

where MVN(0, Σɛ) is a multivariate normal distribution with

mean zero and covariance Σɛ, where process error covariance Σɛ

between triangles r1 and r2 follows a Mat�ern function of distance:

Covðer1;t; er2;tÞ ¼ s�2
e

2m�1CðmÞ ðjejs1 � s2jÞmKmðjejs1 � s2jÞ eqn 10

where se governs the pointwise variance of ɛt, jɛ governs the geo-

statistical range of correlations, m is the smoothness of the covari-

ance matrix (we assume that m = 1 in the following), and Km is

the Bessel function.

To approximate movement rates M among triangles within the

population domain, we define a matrix N representing instanta-

neous movement rates among all triangles. N is negative on the

diagonal and positive or zero everywhere else, and the off-diagonal

nr1,r2 is zero if triangles r1 and r2 do not share an edge. Instanta-

neous movement rate N is further decomposed into movement in

each of four cardinal directions, where m is a vector of parameters

representing movement in each cardinal direction. Further details

regarding the computation of N given a set of nr triangles in a

population domain are given in Appendix S2, and code for com-

puting these matrices is provided as an R package MovementTools

on the first author’s GitHub page (https://github.com/james-thor-

son/movement_tools). Given N, the matrix M approximating

annual movement rates can be calculated using the matrix expo-

nential operator. During parameter estimation, however, we apply

the Euler approximation movement to calculate annual movement

rates M given instantaneous rates N (see Appendix S3).

In the following, we specify that density dependence follows

the Gompertz production function:

gðbr;tÞ ¼ br;t exp ða þ xr � b logðbr;t
ar

ÞÞ eqn 11

where a governs the average population density in the absence of

fishing, b is the loglinear decline in productivity with increasing

density, ar is the total area of triangle r (this standardizes between

triangles of different sizes, so that density dependence b log br;t
ar

� �
is a function of densities

br;t
ar

rather than abundance br,t), and xr

represents spatial variation in productivity:

x�MVNð0;RxÞ eqn 12

where Σx represents the covariance of spatial variation in produc-

tivity, which again follows a Mat�ern covariance function (Thor-

son et al. 2015c).

Similar to the conventional surplus production model, we must

specify abundance br,0 in the first modelled year. We specify

initial abundance as:

b�0 ¼ M a � exp l þ x
b

� �
� exp �u1f1ð Þ

� �
eqn 13

where a � exp lþ x
b

� �
approximates abundance as starting in the

first year at an estimated offset exp(l) away from the equilibrium

density given a Gompertz production function a � exp a þ x
b

� �
,

and b�0 therefore represents a first-order approximation to equilib-

rium abundance given that fishing effort prior to the first year is

approximately equal to its value in the first year of data (i.e. that

u0f0 � u1f1).

We estimate the spatial surplus production model by specifying

that population-wide harvest arises as the sum of harvest in each

triangle:

ht ¼ exp ðdtÞ
Xnr

r¼1
br;tð1� exp ð�utfr;tÞÞ eqn 14

where dt again follows a normal distribution. We specify that

available survey data c in triangle r in year t arises from a zero-

inflated gamma distribution:

PrðC ¼ cÞ

¼
exp ð�h1kÞ if c ¼ 0

ð1� exp ð�h1kÞÞGamma c; h�2
2 ; k

ð1�exp ð�h1kÞÞ h
2
2

� �
if c [ 0

(
eqn 15

where Gamma(x; a, b) is the probability density function evalu-

ated at x, given shape a and scale b, h1 governs how the probabil-

ity of zero catch scales with predicted density (where h1 = 0

implies that increases in density result in larger aggregations but

no increase in the probability of encountering an aggregation), h2
is the coefficient of variation for catch rates given an encounter,

and k is the expected catch:

k ¼ qw
br;t
ar

� �
eqn 16

where q is the catchability coefficient, w is the area swept (or

some other measure of relative survey effort) for a given sample,

and br,t/ar is the population density for triangle r.

The spatial surplus production model requires estimating the

magnitude of spatial variation in productivity (s2x) and unex-

plained spatio-temporal variation (s2x), the geostatistical range of

spatial and spatio-temporal variability (jx and jɛ), measurement

error parameters h, the catchability coefficient (q), average pro-

ductivity (a), the strength of density dependence (b), and instan-

taneous movement rates (m), and treats these parameters as fixed

effects. However, we assume in the following that spatial varia-

tion in productivity and unexplained spatio-temporal variation

both have the same geostatistical range (i.e. jx ¼ je) because

this assumption appears to slightly improve model convergence.

Parameters representing spatial variation in productivity (x) and
spatio-temporal variation in abundance (bt) are treated as ran-

dom effects and are integrated across when computing the mar-

ginal likelihood of fixed effects (Thorson & Minto 2015).

Parameters are estimated by fitting to annual harvest (ht), spatial

fishing effort data (ft), catch rates (c) and area swept for catches

(w). We ease computation by approximating all multivariate nor-

mal distributions (i.e. eqns 9 and 12) using a stochastic partial

differential equation approximation (Lindgren, Rue & Lindstr€om

2011). The marginal likelihood is approximated using the Laplace

approximation, and the gradient of the marginal likelihood with

respect to fixed effects is computed via automatic differentiation

techniques using the Template Model Builder (TMB) software

(Kristensen 2014; Kristensen et al. In press). Code implementing

the spatial surplus production model in TMB is available as an R

package SpatialProduction (https://github.com/James-Thorson/
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spatial_production), and we use three main strategies to reduce

computation time during parameter estimation (see Appendix S3).

The marginal likelihood is then maximized using conventional

nonlinear maximization tools in the R statistical environment (R

Core Team 2014), and standard errors for fixed effects are esti-

mated by calculating the inverse of the matrix of second deriva-

tives of the marginal likelihood function with respect to fixed

effects, evaluated at their maximum likelihood estimates.

Finally, we demonstrate the use of this spatial surplus produc-

tion model to estimate a level of coastwide fishery harvest that is

likely to be sustainable (termed an ‘overfishing limit’ or OFL). Fol-

lowing previous research, we calculate the OFLt in each year t as:

OFLt ¼ 1� exp �Fmsy

M
MLH

� �� �Xnr

r¼1
br;t eqn 17

where
Fmsy

M is an estimate of the ratio of fishing mortality at maxi-

mum sustainable yield to the natural mortality rate (see Zhou

et al. (2012) for more details), and MLH is the natural mortality

rate based on life-history information, such that

1� exp � Fmsy

M MLH

� �� �
is an estimate of the fraction of abun-

dance that can be sustainably harvested annually. Variants on

this calculation have been used to calculate a limit on annual

fishing (termed ‘overfishing limit’) in several fisheries management

regions world-wide (Taylor et al. 2013; Aydin et al. 2014). How-

ever, we also recommend future research to estimate sustainable

harvest rates from the estimated production function g (i.e. using

estimates a, b, and xr).

SIMULATION EXPERIMENT TO DEMONSTRATE MODEL

PERFORMANCE

We first conduct a simulation experiment to explore whether the

model generates unbiased and precise estimates given the sample

sizes available for this case study application. We simulate

dynamics in the R statistical environment for each of 100 simula-

tion replicates and define the spatial domain of the population

model as the sampling domain of the West Coast groundfish bot-

tom trawl survey (Bradburn, Keller & Horness 2011) along the

US waters of Washington, Oregon and California, while approxi-

mating the spatial domain using a triangulated mesh with 202 tri-

angles. To simulate input data for the spatial surplus production

model, we simulate dynamics over 60 years but simulate data col-

lection over only the final 10 years. Each simulation replicate

proceeds as follows:

1. We first simulate a spatial component of fishing intensity (log

(ft) in eqn 8) as a Gaussian random field using the Ran-

domFields package (Schlather 2009) and a temporal compo-

nent for each year (i.e. ut in eqn 8) that follows a log-normal

distribution with log-mean log(0�2) and a log-standard devia-

tion of 0�5.
2. We simulate population dynamics, given a moderate level of

density dependence (b = 0�5), and average productivity simi-

lar to that seen in the case study application (a = log(2�0)).
We specify that spatial variation in productivity (x) has a

marginal standard deviation of 1�0 (in log-space, see eqn 11)

and unexplained spatio-temporal variation in dynamics has a

log-marginal standard deviation of 0�5. We also simulate a low

level of isotropic movement, such that the average probability

of residing in a given triangle from 1 year to the next is

96�6%. Given these parameter values, dynamics are simulated

as outlined previously (eqns 8 and 11). We note that we use

the matrix exponential function to calculate movement rates

when simulating data, whereas we use the Euler approxima-

tion in the estimation model.

3. Given these simulated dynamics, we calculate total fishery har-

vest in each year (eqn 14). We also simulate survey catch data

for each of 600 samples per year, where each sample in each

year occurs at a randomly chosen location within the survey

domain. Catch for each survey tow follows a zero-inflated

gamma distribution (h1 = 1�0, h2 = 1�0).
For each simulation replicate, we apply the estimation model for

only the final 10 years (i.e. including data and estimating dynamics

for only years 51–60). However, we simulate dynamics for the pre-

ceding 50 years as a burn-in period to ensure that the simulated

dynamics in the first year of the estimation model start from a bio-

logically plausible distribution. This involves providing the estima-

tion model with catch rate data from the 6000 simulated sampling

tows in the final 10 years (c), total fishery harvest (h) and data

regarding spatial variation in fishing intensity (ft). We also cor-

rectly specify the life-history parameters required to estimate the

overfishing limit (eqn 17), that is
Fmsy

M ¼ 0�87 and MLH = 0�2.
To assess model performance in this simulation experiment, we

discard any replicate where the estimation model did not con-

verge (i.e. had a final gradient of the marginal likelihood with

respect to a fixed effect >0�01, or had a Hessian matrix that was

not positive definite). For converged replicates, we record all

parameter estimates as well as model predictions of the overfish-

ing limit OFLt and compare these estimated values with the true

simulation values. Given that we specify the correct value for life-

history parameters (i.e. 1� exp � Fmsy

M MLH

� �� �
in eqn 17), evalu-

ating estimation performance for OFLt is identical to assessing

performance in estimating total abundance (i.e.
Pnr

r¼1 br;t in

eqn 17). As with any new method, we encourage future research

testing model performance given other simulation scenarios.

CASE STUDY APPLICATION

As a case study demonstration of the spatial surplus production

model, we analyse data for big skate Raja binoculata in the US

waters of the California Current. This large-bodied elasmobranch

reaches a maximum size of 204 cm and a maximum age of

26 years (McFarlane & King 2006). We analyse survey catches in

2003–2013 from the West Coast groundfish bottom trawl survey,

which conducts approximately 650 trawl tows every summer at

randomly selected locations in the California Current. Each tow

of this survey is in contact with the bottom for approximately

15 min (with an area swept of approximately 2 hectares) and

involves identifying every fish caught to its species (i.e. it yields a

count of big skate caught in every trawl tow along with the loca-

tion of that tow). Given 11 years of data, this survey provides

approximately 7150 sampling tows for use during parameter esti-

mation. For this case study, we approximate the population

domain using 202 triangles.

To characterize spatial variation in fishing intensity (i.e. ft), we

use data regarding bottom trawl fishing effort from self-reported

fishery logbooks. Logbooks are collected by each state (Washing-

ton, Oregon and California) and compiled by PacFIN (a

coastwide repository of catch data), and we use a data base that

has been preprocessed by the West Coast Groundfish Observer

Program (WCGOP). Logbooks include information reporting the
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total bottom time for each bottom trawl tow in the groundfish

fishery, as well as its location (latitude and longitude) and date.

As an alternative data source regarding fishing effort, we also

compile bottom trawl fishing data from fishery observers who are

contracted by the WCGOP to monitor catches on commercial

fishing vessels. Fishery observers have been present on 15–100%

of the bottom trawl fishing trips in the California Current since

2002 (the start of our case study analysis), where the exact pro-

portion varies among years (but where limited sampling will not

affect our analysis as long as observers are allocated randomly).

For either data source, we calculate the total bottom trawl dura-

tion in each triangle divided by the area of that triangle as a

proxy for fishing intensity for each triangle and year (fr,t). A pre-

liminary analysis indicated no substantial or qualitative differ-

ences in model results when calculating the spatial allocation of

fishing (fr,t) from logbook or observer data, so we report results

when using logbook data.

Total harvest (ht) of big skate has previously been estimated for

2002–2013 (Somers et al. 2014), but is not available prior to this

period due to uncertainty about species composition of elasmo-

branch catches arising from a lack of observer data prior to 2002.

We therefore run the estimation models for 11 years with catch

and survey data (2003–2013). Given that data are only available

for a small number of years, likely after intensive non-targeted har-

vest during the 1980s–1990s, we do not have sufficient information

to estimate the catchability coefficient for the survey. We therefore

follow previous ‘data-poor’ analysis methods (Zhou, Griffiths &

Miller 2009; Aydin et al. 2014) and assume that the survey catcha-

bility coefficient q = 1 (i.e. the survey catches all individuals within

the area swept by the trawl). Following Taylor et al. (2013), for big

skate, we assume log
Fmsy

M

� �
�Nð�1�02; 0 �51Þ, corresponding to a

mean of 0�41 and a 0�55 coefficient of variation, and

log (MLH) � N( �1�90, 0�40), corresponding to a mean of 0�16
and a 0�42 coefficient of variation.

Results

SIMULATION EXPERIMENT

Results from the simulation experiment confirm that the

spatial surplus production model provides unbiased and

reasonably precise estimates of the overfishing limit OFLt

(Fig. 1). In particular, estimates of the sustainable level of

harvest have a median relative error near zero for all

years, and an 80% simulation interval ranging from �0�15
to 0�20. A fishery harvest 20% greater than the recom-

mended level is not likely to greatly decrease the capacity

of a marine population to produce sustainable catches, so

we interpret this level of precision as adequate for sustain-

able management of most fish stocks. Inspection of the

parameter estimates in the simulation experiment (Fig. 2)

similarly shows that parameters representing density

dependence (b), average densities (a) and the magnitude of

spatial variation in density (rx) are approximately unbi-

ased (Fig. 2, panels a–c). The correlation between simu-

lated (‘true’) and estimated density at each sampled

location across years is generally high (>0�9), signifying

that spatial count data and accurate information regarding

the spatial distribution of fishing effort is sufficient to

reconstruct spatio-temporal patterns in population density

(Fig. 2f). However, we detect substantial positive bias in

estimates of spatio-temporal error and movement proba-

bilities (Fig. 2d–e). We also note that 15 of 100 replicates

did not converge (i.e. had a gradient of the marginal likeli-

hood >0�01 for at least one fixed effect), although results

are similar using either a more or less strict criterion for

convergence.

CASE STUDY APPLICATION

Based on results in the simulation experiment, we con-

clude that the spatial surplus production model is not able

to accurately estimate movement rates given the quantity

of data and time-series length that is available in the case

study example. We therefore proceed by exploring three

alternative assumptions regarding movement rates for big

skate, that is assuming that movement is absent

(meast = mnorth = mwest = msouth = 0), low (meast = mwest =
0�056, mnorth = msouth = 0�113, where these values are cho-

sen such that movement north–south occurs at twice the

rate of movement east–west, and that the probability of

residing in a given triangle between years is 0�95 on aver-

age), or moderate (meast = mwest = 0�116, mnorth = msouth =
0�232, such that residence probability is 0�9 on average).

These three models (and higher rates of movement) give

almost identical estimates of the overfishing limit (Fig. 3),

so we proceed by summarizing results from the ‘low

movement’ scenario.

Densities of big skate are estimated to vary greatly over

space, with highest densities (>50 kg km�2) nearshore off

the Oregon and Washington coasts (Fig. 4; see Table 1 for

parameter estimates). Densities decrease off the California

Coast south of Cape Mendocino, with the exception of a

nearshore area with elevated densities near the Sacramento

Fig. 1. Summary of the relative error when estimating the annual

overfishing limit in a simulation experiment, calculated as

REt ¼ ð dOFLt �OFLtÞ=OFLt, where dOFLt is the estimate from

the estimation model and OFLt is the true value for that simula-

tion replicate. The shaded area shows the 80% simulation inter-

val, and the solid black is the median estimate for each year (the

dotted line indicates zero, i.e. an ideal estimate).
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Delta, and densities are significant (>5 kg km�2) all the

way to the southern border with Mexico. Densities are gen-

erally lower offshore than nearshore across the entire coast,

although offshore densities are greatest near northern Cali-

fornia. Similarly, some years show a noticeable change in

coastwide density, for example from 2010 to 2011, when the

high-density areas off northern Oregon and southern

Washington show an appreciable decrease in density. A

comparison of the observed harvest with an estimate of the

annual overfishing limit in each year (Fig. 3) shows that

harvest rates have been considerably below target levels for

all years from 2003 to 2013 and have been declining over

time. This conclusion holds despite substantial fluctuations

in the estimate of total abundance during this period, with

depressed abundance during 2006–2008 and elevated abun-

dance in 2010–2013.

Discussion

We have demonstrated how to approximate spatially

explicit population dynamics using individual movement,

density-dependent production and unexplained dynamical

variation that is spatially correlated. This approximation

is inspired by finite element analysis, a technique that is

widely used in engineering applications to approximate

partial differential equations (e.g. thermodynamical sys-

tems). Specifically, we define a set of triangles that encom-

passes the population domain and assume that all

variables are homogenous and instantaneously mixed

within a given triangle. The function representing spatial

variation in density is approximated as being piecewise

constant within each triangle, and advection–diffusion
operators are approximated using matrices of instanta-

neous movement rates. This approximation builds upon

recent computational improvements for spatio-temporal

models, for example the use of the Laplace approximation

for maximum likelihood estimation and the use of the

stochastic partial differential equation approximation to

Gaussian random fields (which is highly efficient relative

to other spatial rank-reduction techniques according to

Wikle & Hooten (2010)). Our use of the Euler approxima-

tion in particular allows for a highly efficient implementa-

tion, where the probability distribution for random effects

representing population density at spatially distant trian-

gles or non-consecutive years is conditionally independent.

This finite element framework also allows for easy

changes in spatial resolution, where the analyst can

choose to use more or fewer triangles to approximate spa-

tial variation, depending on the spatial scale that is bio-

logically relevant. As a final benefit, the finite element

(a) (b) (c)

(d) (e) (f)

Fig. 2. Distribution of parameter estimates for (a) average density, a, (b) density dependence b, (c) marginal standard deviation of spa-

tial variation in productivity rx, (d) marginal standard deviation of residual error in spatio-temporal dynamics re, (e) average probabil-

ity of an individual fish remaining in triangle r between year t and t + 1, (f) correlation between true density ur,t and estimated density

ûr;t. Panels (a–e) show a dashed vertical line giving the true value in the simulation experiment, whereas the correlation in panel

(f) would ideally have a value of 1�0 for each replicate.
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approach allows for easy implementation of irregularly

shaped population boundaries (such as the coastline of

the US West Coast). We used boundaries that fish are

unable to cross in this study (‘reflective boundaries’), but

note that future research could explore boundaries that

cause fish to ‘disappear’ from the modelled portion of the

population after crossing (‘absorptive boundaries’).

The spatial surplus production model generalizes sev-

eral previous spatial and spatio-temporal models in ecol-

ogy. If movement rates are negligible (i.e. N = 0 such that

M = I) and there is no human harvest (i.e. h = 0), then

the model reduces to the spatial Gompertz model (Thor-

son et al. 2015c). A non-spatial Gompertz model has been

generalized for analysis of community dynamics (Ives

et al. 2003; Hampton et al. 2013), and we envision that

our spatial production model could similarly be useful for

analysis of community dynamics given movement and

human harvest. If density dependence is strong (i.e. b = 0,

such that abundance tends to return to equilibrium in

each year), then movement rates have no impact on

model results and the model reduces to a spatial regres-

sion such as those used when standardizing abundance

data in marine stock assessment models (Thorson et al.

2015b). Finally, if spatial variation is absent (i.e. the cor-

relation matrix for spatial variation and spatio-temporal

error is a matrix of ones and fishing effort is constant spa-

tially), then the model reduces to the conventional non-

spatial Gompertz model, which has previously been used

Fig. 4. Estimated density of big skate in

the US waters of the California Current

(colour scale is shown on the right-hand

side of the plot).

Fig. 3. Estimate of overfishing limit, dOFLt, for three movement

rates (thick dashed line: no movement; thick solid line: 95% resi-

dence probability; thick dotted line: 90% residence probability)

and its estimation interval, dOFLt exp ð�SE½logð dOFLtÞ�Þ, where

SE½logð dOFLtÞ� is the estimated standard error of the log-OFL

(intervals plotted with thinner lines above and below overfishing

limit estimate), plotted against observed fishery harvest (thick

grey line).
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to guide design of adaptive management regimes in fish-

eries (Walters & Ludwig 1987).

Our case study application involving big skate in the

US portion of the California Current indicates that recent

harvest rates are considerably lower than is likely to be

sustainable based on life-history analyses (Zhou et al.

2012; Taylor et al. 2013). Research increasingly supports

the use of tiered monitoring programs for all species that

are impacted by any human activity within marine sys-

tems (Smith et al. 2008). Assessing the potential impact of

every human activity on every marine species would be

infeasible and extremely costly, but is potentially feasible

using a tiered monitoring system in which species with

low levels of catch are assessed using qualitative methods

(Level 1), potentially followed by rapid and high-through-

put quantitative techniques (Level 2), and only then fol-

lowed by intensive stock assessments (Level 3, following

definitions in Hobday et al. (2011)). The spatial surplus

production method is conceptually similar to other Level

2 techniques that compare survey estimates of population

abundance with a measure of fishing effort (e.g. Zhou,

Griffiths & Miller (2009)), and we therefore recommend

its use as a monitoring tool for species that are impacted

but do not otherwise have a high likelihood of strong

human impacts. If the spatial surplus production model

for big skate had indicated a greater ratio of observed to

sustainable harvest, we would then recommend that more

data-intensive methods be used for its assessment (Maun-

der & Punt 2013; Methot & Wetzel 2013).

The spatial surplus production model builds upon a

growing toolbox of spatial modelling techniques in popu-

lation and community ecology. Multispecies (a.k.a. ‘joint’)

distribution models are increasingly used to identify spa-

tial areas that can efficiently protect high-density or spe-

cies-rich habitats (Clark et al. 2013; Pollock et al. 2014;

Thorson et al. 2015a), and spatial models for invasive

species are increasingly feasible when interpreting moni-

toring data (Hooten & Wikle 2010). The adoption of spa-

tial population models for marine species has previously

been hindered by a lack of information regarding the

spatial distribution of fishing impacts. In this study, we

have used data from fishery logbooks to estimate the spa-

tial distribution of fishing effort and have combined this

with coastwide estimates of total fishery catch. Extending

the model prior to 2002 (e.g. using survey catch rate data

starting in 1977) is infeasible for big skate because earlier

coastwide harvest has not previously been estimated.

However, logbook data otherwise could be used for other

species to discriminate coastwide spatial patterns in fish-

ing effort as early as 1987, so the spatial surplus produc-

tion model developed here could be used to reconstruct

historical dynamics for other species.

Our simulation experiment illustrated that movement

rates cannot be reliably estimated given the quantity of

data available in our case study. However, this impreci-

sion does not appear to degrade estimation performance

for other model parameters or derived quantities given

the data available for well-sampled fish stocks off the US

West Coast. We suspect that precise estimation of move-

ment parameters will require tagging data (e.g. Car-

ruthers, McAllister & Taylor (2011)). Movement of

tagged fish from the release location to the recapture loca-

tion can be analysed as a Poisson-distributed generalized

linear model, where the probability of transition from one

triangle to another in t years (conditional on survival of

the tagged individual) is equal to the movement matrix M

raised to the t-th power. Evaluating estimation perfor-

mance in this case, and identifying a suitable case study

application, is an active area of research for the authors.

The spatial surplus production model is also intended

as a starting point for developing population models that

include age, length and sex structure. Incorporating sam-

ples of length, age or sex composition can be accom-

plished in multiple ways. Given that only a subsample of

caught individuals is measured for sex, length or age, and

given that the intensity of age/length/sex subsampling is

statistically independent of catch rates, these length, age

and sex composition samples can be approximated using

a Poisson distribution. However, many sampling pro-

grams subsample a fixed number of fishes for each tow

Table 1. Parameter estimates and standard errors for spatial surplus production model applied to big skate in the US waters of the

California Current

Name Symbol Estimate

Standard

error

Median productivity a 1�993 0�895
Density dependence b 0�756 0�178
Parameter governing offset between initial and equilibrium abundance l 2�417 1�010
Parameter governing the range of spatial correlations log (j) 0�069 0�181
Parameter governing the magnitude of spatial variation in productivity sx 0�102 0�026
Parameter governing the magnitude of otherwise unexplained spatio-temporal

variation

sɛ 0�448 0�131

Log-rate of decay in probability of zero catches with increasing local density log (h1) �2�292 0�035
Log-coefficient of variation in positive catches log (h2) 0�038 0�020
Derived quantities

Log-standard deviation of spatial variation log (rx) 0�950 0�263
Log-standard deviation of spatio-temporal variation log (rɛ) �0�531 0�168
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(e.g. measure age for at most five individuals per sampling

tow), and this induces a correlation between subsampling

intensity and catch rates. This circumstance is termed

‘preferential sampling’ in the geostatistical literature (Dig-

gle, Menezes & Su 2010) and results in well-known biases

in estimates of age, length and sex structure. We therefore

recommend research regarding preferential sampling for

spatially structured population models.

Similarly, future research could seek to estimate the

catchability coefficient. In this study, we assume that

q = 1, that is that all individuals within the area swept by

the survey are subsequently caught. We note, however, that

catchability would need to be considerably higher (i.e.

q > 2�5) for harvest to exceed the annual overfishing limit

in any year from 2003 to 2013. The assumption that q = 1

is commonly made in data-poor assessment methods in the

USA (Taylor et al. 2013; Aydin et al. 2014) and Australia

(Zhou, Griffiths & Miller 2009), and it will be wrong when-

ever a substantial portion of fishes either avoid capture

(q < 1), or the effective area swept is greater than the nomi-

nal area swept due to herding behaviours (q > 1). The

catchability coefficient is estimable in at least three circum-

stances. First, it can be estimated whenever increases in fish-

ery catch are associated with decreases in catch rates (e.g.

by treating a fishery as a depletion experiment). This tech-

nique would require extending the time series of informa-

tion regarding the spatial distribution of fishing effort to

periods of high fishing rates (typically prior to 2000 for bot-

tom-associated fishes in the California Current). Secondly,

the catchability coefficient can be estimated whenever infor-

mation regarding growth and mortality rates, compared

with age or length structure, gives direct information

regarding fishing mortality rates (Hordyk et al. 2014; Thor-

son & Cope In press). Thirdly, it can be estimated when

tag–recapture data give auxiliary information regarding fish-

ing mortality rates. We speculate that technique #1 (extend-

ing fishing effort data) will be most applicable for future

assessments of big skate, because routine collection of tag-

ging or age information is lacking for this species, and the

catches of elasmobranchs were not sampled early enough to

capture the periods of historically high catch rates.

Finally, we encourage future simulation modelling

research to determine the average management perfor-

mance of the spatial surplus production model when com-

bined with different possible pre-determined rules for

managing fishery harvest (termed ‘harvest control rules’,

e.g. see Ichinokawa et al. (2015)). In particular, this evalu-

ation will likely require exploration of the assumption

that sustainable harvest rates can be derived from the

population’s natural mortality rate. Harvest control rules

could also be specified as being area-specific, which would

presumably be important for maintaining biomass targets

in each area given spatial variation in fishing rates. Area-

specific harvest control rules could be particularly useful

for monitoring human impacts in developing fisheries,

where individual ports or processing facilities might begin

to develop a particular fishery faster than others.
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